Three applications of ideal dichotomy

- No S-spaces (assuming Ideal dichotomy for ω_1 generated ideals).
- No Souslin trees (under PID).
- $\mathfrak{b} \leq \omega_2$ (under PID).

ヨト・ヨト

Theorem

PFA implies that there no S-spaces. In fact, the simple dichotomy for \aleph_1 -generated ideals implies that there are no S-spaces.

Recall this dichotomy. If *I* is any ω_1 generated ideal of countable sets then either there is an uncountable set our of *I* or an uncountable set inside of *I*.

Proof. Recall the definition: An S-space is a regular, hereditarily separable, but not hereditarily Lindelof topological space.

To prove that no such space exists (under the dichotomy), suppose that X is a regular topological space which is not hereditarily Lindelof and we shall prove that X is not hereditarily separable. Since X is not hereditarily Lindelof, X has a subspace $S = \{x_{\alpha} \mid \alpha < \omega_1\}$ such that every initial part $S_{\delta} = \{x_{\alpha} \mid \alpha \leq \delta\}$ is open in S (i.e. S is "right-separated"). We consider the subspace topology on S and shall find a subset of S which is not separable.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Since S is regular, each x_{α} has an open neighborhood U_{α} with closure $\overline{U}_{\alpha} \subset S_{\alpha}$.

These countable closed sets generate an ideal *I*. By the dichotomy, there is an uncountable set $D \subset S$ which is either "inside" or "out" of *I*.

If D is in, then every countable subset E of D is in I, which means that it is covered by a countable closed set, and hence E is not dense in D.

If D is out of *I*, then D has a finite intersection with every set in *I*. So in particular the intersection of *D* with every U_{α} is finite. As *S* is a Hausdorff space, *D* is discrete (and therefore not separable).

Now we deal with Souslin trees under PID.

æ

590

< ロト < 回 ト < 回 ト < 回 ト</p>

No Souslin trees under PID

Let *T* be an ω_1 tree. Define an ideal *I* by: $A \in I$ iff $A \subset T$ is countable and for every $t \in T A \cap \{x \in T \mid x < t\}$ is finite.

We have to check that *I* is a *P*-ideal.

< ロト < 同ト < ヨト < ヨト

No Souslin trees under PID

Let *T* be an ω_1 tree. Define an ideal *I* by: $A \in I$ iff $A \subset T$ is countable and for every $t \in T A \cap \{x \in T \mid x < t\}$ is finite.

We have to check that *I* is a *P*-ideal.

There are two possibility of the dichotomy:

- There is an uncountable set in *I*: this yields an uncountable antichain.
- There is an uncountable set out of *I*: this yields an uncountable chain.

E > < E >

Size of continuum under PID

By Todorcevic and Velickovic, the PFA implies the continuum is \aleph_2 . Now the PID is consistent with CH. So PID does not imply $\mathfrak{c} = \aleph_2$. Does it imply $\mathfrak{c} \le \aleph_2$? This is an open question. Todorcevic has proved however that the PID implies $\mathfrak{b} \le \aleph_2$.

Recall that $\mathfrak b$ is the smallest cardinality of an unbounded subset of ω^ω in the $<^*$ ordering.

A B F A B F

Theorem

PID implies $\mathfrak{b} \leq \omega_2$.

Some definitions.

590

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

Theorem

PID implies $\mathfrak{b} \leq \omega_2$.

Some definitions.

Definition

Suppose $f <^* g$. Define $\chi(f,g) = n$ if n is the minimal integer such that for all $m \ge n f(m) < g(m)$.

Definition

For
$$f \in \omega^{\omega}$$
 define $(\langle f) = \{ e \in \omega^{\omega} \mid e \langle f \}.$

3

イロト イポト イヨト イヨト

Definition

If $A \subset (< g)$, $\lim_{f \in A} \chi(f, g) = \infty$ means that for every n, $\{f \in A \mid \chi(f, g) < n\}$ is finite.

Definition

Let I_g be defined as the collection of all countable $A \subset (< g)$ such that $\lim_{f \in A} \chi(f, g) = \infty$.

Theorem

Ig is a P-ideal

イロト イポト イヨト イヨト

Definition

If $A \subset (< g)$, $\lim_{f \in A} \chi(f, g) = \infty$ means that for every n, $\{f \in A \mid \chi(f, g) < n\}$ is finite.

Definition

Let I_g be defined as the collection of all countable $A \subset (< g)$ such that $\lim_{f \in A} \chi(f, g) = \infty$.

Theorem

Ig is a P-ideal

 $g_1 <^* g_2$ implies $I_{g_1} \supseteq I_{g_2}$.

イロト イポト イヨト イヨト

Proof of $\mathfrak{b} \leq \omega_2$

Assume $b > \omega_2$. Construct a <* increasing sequence in ω^{ω} of length ω_2 : $\langle f_{\xi} | \xi < \omega_2 \rangle$. We define an ideal *I* of countable subsets of ω_2 .

Definition

 $X \in I$ iff X is countable and for some $\xi_0 < \omega_2$, for all $\xi_0 \le \alpha < \omega_2$ we have $X \in I_{f_{\varepsilon}}$. (By this we mean $\{f_{\alpha} \mid \alpha \in X\}$.

Lemma

Assuming $\omega_2 < \mathfrak{b}$, I is a P-ideal.

Proof. Suppose $A_i \in I$, for $i \in \omega$. For every $\xi < \omega_2$ high enough every A_i is in $I_{f_{\xi}}$. Define $h_{\xi}(j) = \{\alpha \in A_j \mid \chi(f_{\alpha}, f_{\xi}) \leq j\}$ (a finite set). Then find a single *h* that dominates all $h_x i$ (by $\omega_2 < \mathfrak{b}$), and use it to define $A = \bigcup_i (A_i \setminus h(i))$.

By the PID there are two possibilities.

(1) There is an uncountable X inside I.

Suppose *X* has order type ω_1 . There is $\xi < \omega_2$ high enough so that for every $X_0 \subset X$ an initial segment $\lim_{\alpha \in X_0} \chi(f_\alpha, f_\xi) = \infty$. But this is impossible as we can fix $\chi(f_\alpha, f_\xi)$ on some uncountable set of $\alpha \in X$.

∃ ► < ∃ ►</p>

Second PID possibility: ω_2 is a countable union of sets out of *I*. So some unbounded $E \subset \omega_2$ is out of *I*.

Define $g \in \omega^{\omega}$ so that $f_{\xi} <^* g$ for all ξ .

Define $s \in (\omega \cup \{\infty\})^{\omega}$ by

 $s(n) = \sup_{\alpha \in E} f_{\alpha}(n).$

Claim: s hits ∞ only a finite number of times.

(Otherwise we would find an infinite subset of *E* in *I*).

Define $s^-(n) = s(n) - 1$. Then $f_{\xi} <^* s^-$ for all ξ . Yet we can find now an infinite subset of *E* that is in I_{s^-} and hence in each $I_{f_{\xi}}$ and so in *I*.